Skip to main content

ARIMA

ARIMA (AutoRegressive Integrated Moving Average) is a popular time series forecasting model that combines autoregressive (AR), differencing (I), and moving average (MA) components to capture the patterns and dependencies in time series data. It is widely used for analyzing and forecasting time-dependent data points.

The ARIMA model is suitable for stationary time series data, where the statistical properties such as mean and variance remain constant over time. If the data is non-stationary, differencing can be applied to make it stationary by removing trends or seasonality.

Method: POST Authorization: API Key
https://engine.raccoon-ai.io/api/v1/ml/time-series/arima

Authorization

TypeKeyValue
API KeyX-Api-Keyrae_######

Request Body

SectionKeyData TypeRequiredDescription
traindatajsontrueData that use to train the model
date_colstringtrueInput features (X)
target_colstringtrueOutput targets (y)
configfreqstringfalseGap between datas/ time
test_sizefloatfalseTest size for split data
forcastforcast_forinttrueNumber of points that need to forcast

Types

{
"train": {
"data": <json>,
"dates_col": <string>,
"target_col": <string>
},
"config": {
"freq": <string>,
"test_size": <float>
},
"forcast_for": <int>
}

Sample

{
"train": {
"data": {
"dates": {
"0": "2022-11-25",
"1": "2022-12-02",
"2": "2022-12-09",
"3": "2022-12-16",
"4": "2022-12-23",
"5": "2022-12-30",
"6": "2023-01-06",
"7": "2023-01-13",
"8": "2023-01-20",
"9": "2023-01-27"
},
"marks": {
"0": 161,
"1": 123,
"2": 134,
"3": 167,
"4": 143,
"5": 156,
"6": 167,
"7": 143,
"8": 156,
"9": 167
}
},
"dates_col": "dates",
"target_col": "marks"
},
"config": {
"freq": "W",
"test_size": 0.25
},
"forcast_for": 5
}

Reponse Body

KeyData TypeDescription
successbooleanIndicate the success of the request
msgstringMessage indicators
errorstringError information, only set if success is false
resultjsonResult, only set if success is true
scorejsonRMSE (Root Mean Square Error) of the model, only set if success is true
generated_tsfloatGenerated timestamp

Types

{
"success": <boolean>,
"msg": <string | null>,
"error": <string | null>,
"result": <list>,
"score": {
"rmse": <float>
},
"generated_ts": <timestamp>
}

Sample

{
"success": true,
"msg": "Model trained and predicted successfully",
"error": null,
"result": [
145.306460384454, 159.01596373700463, 165.26655276778865,
144.69950483108218, 160.2060306291415
],
"score": {
"rmse": 14.027130973766175
},
"generated_ts": 1685514898.064395
}